生活随想随思记

萌仙不仙

首页 >> 生活随想随思记 >> 生活随想随思记最新章节(目录)
大家在看 一个丫鬟的长寿守则 斗罗:在下,武帝朱竹清 漫威:从蜘蛛侠开始剧透 我在修真界苟道长生 团宠农门小作精:首辅追妻火葬场 穿书后,我抢劫女主带飞全宗门! 重生娱乐圈女神:神秘大导演 上午毁我丹田,下午在你坟前烧纸 闪婚七零:随军养崽暴富了 重生古代:庶子的开挂之路
生活随想随思记 萌仙不仙 - 生活随想随思记全文阅读 - 生活随想随思记txt下载 - 生活随想随思记最新章节 - 好看的N次元小说

卷积网络什么意思?举个例子,通俗易懂一点。

上一章 书 页 下一章 阅读记录

卷积网络什么意思?举个例子,通俗易懂一点。

卷积网络,全称卷积神经网络(convolutional Neural Netork,缩写cNN),是一种专门为处理具有网格结构数据(如图像、音频)而设计的深度学习模型。下面用一个识别猫图片的例子来通俗解释:

想象你有一堆猫和其他动物的图片,要让计算机能认出哪些是猫。卷积网络就像一个有很多双“特殊眼睛”的侦探。

卷积层

这些“眼睛”就是卷积层中的卷积核,它们会在图片上一格一格地移动,每次只关注一部分,比如看图片里有没有猫耳朵的形状、猫眼睛的样子等,把这些特征都找出来。比如一个3x3的卷积核在图片上滑动,每次对这9个像素进行计算,提取出一些简单特征。

池化层

接着有个“助手”池化层,它的工作是把卷积层找到的特征进行整理简化,挑出最重要的特征,就像把一些相似的特征合并成更重要的大特征,减少数据量,让计算机处理起来更轻松。比如把一个2x2区域内的特征取最大值,代表这个区域的主要特征。

全连接层

最后,把这些经过处理的特征送到全连接层,全连接层就像一个“大脑”,把所有特征综合起来,根据之前学习到的猫的各种特征知识,判断这张图片是不是猫,给出一个最终的答案。

通过卷积层、池化层和全连接层等的配合,卷积网络就能从大量图片中学习到猫的特征,从而准确地识别出猫,也能对其他各种图像进行分类、检测等任务。

卷积网络为什么叫卷积?

卷积网络之所以桨卷积”,是因为其核心操作是卷积运算,以下从数学和实际应用角度解释:

从数学角度

在数学中,卷积是一种积分运算,用于描述两个函数如何相互作用产生第三个函数。对于离散数据,卷积表现为两个序列的特定求和操作。在卷积网络中,卷积核与输入数据进行卷积操作,将卷积核中的权重与输入数据的对应区域进行乘法和求和运算,产生新的特征表示,这一过程与数学上的卷积运算形式一致。

从实际应用角度

在图像处理等应用中,卷积核在输入图像上滑动,每次与图像的一个区域进行计算,就像把卷积耗特征“卷”到了图像的每个区域上,提取出图像不同位置的特征,这种操作形象地体现了“卷积”的过程。比如用一个边缘检测的卷积核在图像上滑动,就可以检测出图像中各个位置的边缘信息,就好像是将边缘检测的功能通过卷积操作“卷”到了整个图像上,所以这种网络就被称为卷积网络。

在数学中,卷积作为一种积分运算是在什么教育程度开始进行学习的?是高症大学还是研究生、博士?这种函数包括离散数据,包括序列操作啥什么要求,都是在哪个层次的数学中学习的?

在数学中,卷积作为一种积分运算一般是在大学阶段开始学习的。具体情况如下:

学习阶段

?本科低年级:在信号与系统、数字信号处理等相关课程中,电子信息类等专业的学生通常会初次接触到卷积的概念和运算,主要是连续函数的卷积,用于分析线性时不变系统对输入信号的响应等问题。

?本科高年级或研究生:在更深入的数学课程如泛函分析、调和分析等,以及一些专业的高级课程中,会对卷积进行更深入的理论研究,包括卷积的性质、在不同函数空间中的应用等。此时也会涉及到离散卷积以及更复杂的序列操作等内容,用于解决更复杂的信号处理、图像处理、概率统计等领域的问题。

知识要求

?函数基础:需要对函数的概念、性质,特别是连续函数和离散函数有深入理解,能够熟练进行函数的运算和变换。

?积分知识:对于连续卷积,要熟练掌握定积分、重积分等积分运算的方法和性质,理解积分在描述函数关系和物理现象等方面的作用。

?序列与离散数学:学习离散卷积和序列操作,需要有离散数学的基础,包括对序立数列的理解,以及掌握一些基本的离散运算和算法,如求和运算、移位操作等。

?线性代数:在利用卷积进行信号处理等实际应用中,往往会涉及到线性空间、矩阵运算等线性代数知识,用于对信号和系统进行建模和分析。

连续函数和离散函数是在什么教育层次开始进行学习的?连续卷积、定积分、重积分是在什么层次开始学习的?离散卷积、序列操作、离散数学基础是在什么层次开始学的?线性空间、矩阵运算等线性代数,代数知识是在什么层次开始学的?

以下是这些数学概念通常开始学习的教育层次:

连续函数和离散函数

?高中阶段:会初步接触连续函数和离散函数的一些简单例子,如一次函数、二次函数等连续函数,以及数列这种离散函数的雏形,主要是直观感受和简单应用。

?大学阶段:在高等数学、数学分析等课程中,会对连续函数进行严格的定义和深入研究,包括连续性的判定、性质等。在离散数学、概率论等课程中,会系统学习离散函数,如离散随机变量的分布函数等。

连续卷积、定积分、重积分

?大学阶段:一般在高等数学课程中,先学习定积分,掌握其概念、计算方法和基本应用。之后在多元函数微积分部分会学习重积分。连续卷积通常在信号与系统、数学物理方程等课程中正式学习。

?研究生阶段:在一些专业的高级课程中,会对连续卷积、定积分和重积分进行更深入的理论研究和复杂应用。

离散卷积、序列操作、离散数学基础

?大学阶段:在离散数学课程中,会系统学习离散数学基础,包括集合、关系、图论等。在数字信号处理等课程中,会学习离散卷积和序列操作,用于离散信号的处理和分析。

?研究生阶段:在一些专业的高级课程中,会进一步深入研究离散卷积和序列操作在更复杂的算法和系统中的应用。

线性空间、矩阵运算等线性代数知识

?大学阶段:通常在大学一年级或二年级的线性代数课程中,会系统学习线性空间、矩阵运算、行列式、线性方程组等线性代数的基础知识。

?研究生阶段:在一些专业的高级课程中,如矩阵论、数值分析等,会对线性代数知识进行更深入的拓展和应用。

网络人流量预测需要用哪种我神经网络模型可以预测得到?

以下是一些常用于网络人流量预测的神经网络模型:

循环神经网络(RNN)及相关变体

? RNN:能处理序列数据中的长期依赖关系,通过隐藏状态存储历史信息来预测未来网络人流量,但其存在梯度消失或爆炸问题,在处理长序列时可能受限。

?长短期记忆网络(LStm):是RNN的改进,有记忆单元和门控机制,能更好地捕捉长期依赖,有效处理和存储长时间序列中的重要信息,在网络人流量预测中可准确学习不同时间步的流量变化模式。

?门控循环单元(GRU):也改进自RNN,将遗忘门和输入门合并为更新门,简化结构同时保持对长期依赖的建模能力,计算效率高,在网络人流量预测中能快速处理序列数据并给出预测结果。

卷积神经网络(cNN)与RNN\/LStm结合的模型

? cNN-RNN\/LStm:cNN可提取网络流量数据的空间特征,如不同区域或节点的流量分布模式,RNN或LStm负责处理时间序列特征,二者结合能同时利用空间和时间信息进行更精准的人流量预测。

注意力机制(Attention)结合的模型

? Attention-RNN\/LStm:注意力机制能让模型在处理序列数据时自动关注不同时间步的重要信息,与RNN或LStm结合可使网络人流量预测模型更聚焦于关键的流量变化时刻和特征,提高预测准确性。

? transformer:完全基于注意力机制,并行计算能力强,能高效处理长序列数据,可捕捉网络人流量数据中长距离的依赖关系,在大规模网络人流量预测任务中表现出色。

生成对抗网络(GAN)相关模型

?条件生成对抗网络(cGAN):在GAN基础上引入条件信息,可将历史网络人流量数据作为条件,生成符合特定条件的未来人流量数据,用于预测不同场景或条件下的网络人流量变化。

喜欢生活随想随思记请大家收藏:(m.aizhuixs.com)生活随想随思记爱追小说网更新速度最快。

上一章 目 录 下一章 存书签
站内强推 谁是文仙 官场争雄,从女书记的秘书开始 夫君今天又挨揍了 诡城密语 团宠农家小糖宝 重逢路漫漫 柯南之组织没了我迟早要完 说我不配当师兄,我退宗了你哭啥 快穿:帝王名臣将相,皆是裙下臣 机械末世:我的机甲有亿点强 女主一直在遭罪[星际] 关灯!神秘老公深深宠 莲花楼之长乐 真千金只想拿钱 娘胎入道的我,脑补成帝! 斗罗:在下,武帝朱竹清 带着女徒去西游 从导引服食开始做红尘仙 数据入侵:我培养千万战士 漫威:从蜘蛛侠开始剧透
经典收藏 四合院:身在民间,心向红星 悠哉兽世:兽王的极品娇娇 天正寻龙秘史 系统之美女天后 穿越:别人修炼我加点 被迫走六种剧情 精灵:我的忍蛙会仙人模式飞雷神 四合院:开始幸福生活 倾城太后哀家不侍寝 捡的穷老公竟是豪门世家 撒旦老公赖上门 时光绘爱:林与陈的千年恋 穿成小姑奶奶,靠拼夕夕富甲一方 嫁给凶神后,貌美小夫郎被宠上天 夫君今天又挨揍了 我与渣夫换身体,冷眼看他哭唧唧 团宠空间:首辅悍妻忙种田 秦时野心家 兽世直播:好孕雌性争夺战 满级大佬,摆摊算命修龙脉护国运
最近更新 候春归 极致问道 重生宝可梦:我的青梅竹马是小光 神奇宝贝:开局被迫成为龙系大师 卷王魔女从不认输 仵作生香 超凶!玄门小祖宗飒爆全京圈 腹黑王爷的穿越小农妃 魂穿兽世:恶雌她翻身成团宠啦! 夫人她马甲又轰动全城了 死遁归来,禁欲佛子为我带崽三年 东京人不讲武德 开局发现一座灵石矿,螺旋起飞 亮剑:开局手搓飞雷炮,老李乐疯了! 乱春衫 混沌吞天诀之重生 位面商铺:开局一块破布 快穿之天残地缺 呆萌萝莉总裁的隐婚虐恋 火影:穿越后我成了初代的弟子
生活随想随思记 萌仙不仙 - 生活随想随思记txt下载 - 生活随想随思记最新章节 - 生活随想随思记全文阅读 - 好看的N次元小说